<< Chapter < Page Chapter >> Page >

Glandular epithelium

A gland is a structure made up of one or more cells modified to synthesize and secrete chemical substances. Most glands consist of groups of epithelial cells. A gland can be classified as an endocrine gland    , a ductless gland that releases secretions directly into surrounding tissues and fluids (endo- = “inside”), or an exocrine gland    whose secretions leave through a duct that opens directly, or indirectly, to the external environment (exo- = “outside”).

Endocrine glands

The secretions of endocrine glands are called hormones. Hormones are released into the interstitial fluid, diffused into the bloodstream, and delivered to targets, in other words, cells that have receptors to bind the hormones. The endocrine system is part of a major regulatory system coordinating the regulation and integration of body responses. A few examples of endocrine glands include the anterior pituitary, thymus, adrenal cortex, and gonads.

Exocrine glands

Exocrine glands release their contents through a duct that leads to the epithelial surface. Mucous, sweat, saliva, and breast milk are all examples of secretions from exocrine glands. They are all discharged through tubular ducts. Secretions into the lumen of the gastrointestinal tract, technically outside of the body, are of the exocrine category.

Glandular structure

Exocrine glands are classified as either unicellular or multicellular. The unicellular glands are scattered single cells, such as goblet cells, found in the mucous membranes of the small and large intestine.

The multicellular exocrine glands known as serous glands develop from simple epithelium to form a secretory surface that secretes directly into an inner cavity. These glands line the internal cavities of the abdomen and chest and release their secretions directly into the cavities. Other multicellular exocrine glands release their contents through a tubular duct. The duct is single in a simple gland but in compound glands is divided into one or more branches ( [link] ). In tubular glands, the ducts can be straight or coiled, whereas tubes that form pockets are alveolar (acinar), such as the exocrine portion of the pancreas. Combinations of tubes and pockets are known as tubuloalveolar (tubuloacinar) compound glands. In a branched gland, a duct is connected to more than one secretory group of cells.

Types of exocrine glands

This table shows the different types of exocrine glands: alveolar (acinar) versus tubular and those with simple ducts versus compound ducts. Each diagram shows a single layer of columnar epithelial cells with a line of cells travelling along the surface of a tissue (surface epithelium) and then dipping into a hole in the tissue. The cells travel down the right side of the hole until they reach the bottom, then curve around the bottom of the hole and then travel up the left side. Finally, the cells emerge back onto the surface of the tissue. The surface epithelial cells are those that are on the surface of the tissue; the duct cells are those that line both walls of the hole. The gland cells are those that line the bottom of the hole. The shape of the hole differs in each gland. In the simple alvelolar (acinar) gland, the duct and gland cells are bulb shaped with the gland cells being the larger end of the bulb. Simple alveolar glands are not found in adults, as these represent an early developmental stage of simple, branched glands. In simple tubular glands, the duct and gland cells are U shaped. Simple tubular glands are found in the intestinal glands. In simple branched alveolar glands, the gland cells form three bulbs at the end of the duct, similar in appearance to a clover leaf. The sebaceous (oil) glands are examples of simple branched alveolar glands. In simple coiled tubular glands, the duct and gland cells form a U, however, the bottom of the U, which is all gland cells, is curved up to the right. Merocrine sweat glands are examples of simple coiled tubular glands. In simple branched tubular glands, the duct is very short and the gland cells divide into three lobes, similar in appearance to a bird’s foot. The gastric glands of the stomach and mucous glands of the esophagus, tongue and duodenum are examples of simple branched tubular glands. Among the glands with compound ducts, compound alveolar (acinar) glands have three sets of clover leaf bulbs, for a total of six bulbs. Two of the clover leaf shaped structures extend parallel to the surface epithelium in opposite directions to each other. The third clover leaf extends down into the tissue, perpendicular to the surface. The duct is cross-shaped. The mammary glands are an example of compound alveolar glands. Compound tubular glands have a similar structure to compound alveolar glands. However, instead of three cloverleaf shaped bulbs, the compound tubular gland has three bird’s foot shaped bulbs. The duct is also cross-shaped in the compound tubular gland. The mucous glands of the mouth and the bulbourethral glands of the male reproductive system are examples of compound tubular glands, which are also found in the seminiferous tubules of the testis. Compound tubuloalveolar glands are a hybrid between the compound alveolar gland and the compound tubular gland. The two sets of bulbs that run parallel to the surface are bird-foot shaped; however, the set of bulbs that runs perpendicularly below the surface is cloverleaf shaped. The salivary glands, glands of the respiratory passages and glands of the pancreas are all compound tubuloalveolar glands.
Exocrine glands are classified by their structure.

Methods and types of secretion

Exocrine glands can be classified by their mode of secretion and the nature of the substances released, as well as by the structure of the glands and shape of ducts ( [link] ). Merocrine secretion is the most common type of exocrine secretion. The secretions are enclosed in vesicles that move to the apical surface of the cell where the contents are released by exocytosis. For example, watery mucous containing the glycoprotein mucin, a lubricant that offers some pathogen protection is a merocrine secretion. The eccrine glands that produce and secrete sweat are another example.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask