<< Chapter < Page Chapter >> Page >
Using a finite Fourier series to represent the encoding of information in time T.

To emphasize the fact that every periodic signal has both a time and frequency domain representation, we can exploit both to encode information into a signal. Refer to the Fundamental Model of Communication . We have an information source, and want to construct a transmitter thatproduces a signal x t . For the source, let's assume we have information to encode every T seconds. For example, we want to represent typed letters produced by anextremely good typist (a key is struck every T seconds). Let's consider the complex Fourier series formula in the light of trying to encodeinformation.

x t k K K c k 2 k t T
We use a finite sum here merely for simplicity (fewer parametersto determine). An important aspect of the spectrum is that each frequency component c k can be manipulated separately: Instead of finding the Fourier spectrum from a time-domain specification, let's construct it inthe frequency domain by selecting the c k according to some rule that relates coefficient values to the alphabet. In defining this rule, we want to always create areal-valued signal x t . Because of the Fourier spectrum's properties , the spectrum must have conjugate symmetry. This requirementmeans that we can only assign positive-indexed coefficients (positive frequencies), with negative-indexed ones equaling thecomplex conjugate of the corresponding positive-indexed ones.

Assume we have N letters to encode: a 1 a N . One simple encoding rule could be to make a single Fouriercoefficient be non-zero and all others zero for each letter. For example, if a n occurs, we make c n 1 and c k 0 , k n . In this way, the n th harmonic of the frequency 1 T is used to represent a letter. Note that the bandwidth —the range of frequencies required for the encoding—equals N T . Another possibility is to consider the binary representation of the letter's index. For example, if theletter a 13 occurs, converting 13 to its base 2 representation, we have 13 1101 . We can use the pattern of zeros and ones to represent directlywhich Fourier coefficients we "turn on" (set equal to one) and which we "turn off."

Compare the bandwidth required for the direct encoding scheme (one nonzero Fourier coefficient for each letter) to the binary number scheme. Compare the bandwidths for a128-letter alphabet. Since both schemes represent information without loss -- we can determine the typedletter uniquely from the signal's spectrum -- both are viable. Which makes more efficient use of bandwidth andthus might be preferred?

N signals directly encoded require a bandwidth of N T . Using a binary representation, we need 2 logbase --> N T . For N 128 , the binary-encoding scheme has a factor of 7 128 0.05 smaller bandwidth. Clearly, binary encoding is superior.

Got questions? Get instant answers now!

Can you think of an information-encoding scheme that makes even more efficient use of the spectrum? In particular, canwe use only one Fourier coefficient to represent N letters uniquely?

We can use N different amplitude values at only one frequency to represent thevarious letters.

Got questions? Get instant answers now!

We can create an encoding scheme in the frequency domain to represent an alphabet of letters. But, as thisinformation-encoding scheme stands, we can represent one letter for all time. However, we note that the Fourier coefficientsdepend only on the signal's characteristics over a single period. We could change the signal's spectrumevery T as each letter is typed. In this way, we turn spectral coefficients on and off asletters are typed, thereby encoding the entire typed document. For the receiver (see the Fundamental Model of Communication ) to retrieve the typed letter, it would simply use the Fourier formula for the complex Fourier spectrum for each T -second interval to determine what each typed letter was. [link] shows such a signal in the time-domain.

Encoding signals

The encoding of signals via the Fourier spectrum is shown over three "periods." In this example, only the third and fourthharmonics are used, as shown by the spectral magnitudes corresponding to each T -second interval plotted below the waveforms. Can you determine thephase of the harmonics from the waveform?

In this Fourier-series encoding scheme, we have used the fact that spectral coefficients can be independently specified andthat they can be uniquely recovered from the time-domain signal over one "period." Do note that the signal representing theentire document is no longer periodic. By understanding the Fourier series' properties (in particular that coefficients aredetermined only over a T -second interval, we can construct a communications system. Thisapproach represents a simplification of how modern modems represent text that they transmit over telephone lines.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask