<< Chapter < Page Chapter >> Page >

The torque found in the preceding example is the maximum. As the coil rotates, the torque decreases to zero at θ = 0 size 12{θ=0} {} . The torque then reverses its direction once the coil rotates past θ = 0 size 12{θ=0} {} . (See [link] (d).) This means that, unless we do something, the coil will oscillate back and forth about equilibrium at θ = 0 size 12{θ=0} {} . To get the coil to continue rotating in the same direction, we can reverse the current as it passes through θ = 0 size 12{θ=0} {} with automatic switches called brushes . (See [link] .)

The diagram shows a current-carrying loop between the north and south poles of a magnet at two different times. The north pole is to the left and the south pole is to the right. The magnetic field runs from the north pole to the right to the south pole. Figure a shows the current running through the loop. It runs up on the left side, and down on the right side. The force on the left side is into the page. The force on the right side is out of the page. The torque is clockwise when viewed from above. Figure b shows the loop when it is oriented perpendicular to the magnet. In both diagrams, the bottom of each side of the loop is connected to a half-cylinder that is next to a rectangular brush that is then connected to the rest of the circuit.
(a) As the angular momentum of the coil carries it through θ = 0 size 12{θ=0} {} , the brushes reverse the current to keep the torque clockwise. (b) The coil will rotate continuously in the clockwise direction, with the current reversing each half revolution to maintain the clockwise torque.

Meters , such as those in analog fuel gauges on a car, are another common application of magnetic torque on a current-carrying loop. [link] shows that a meter is very similar in construction to a motor. The meter in the figure has its magnets shaped to limit the effect of θ size 12{θ} {} by making B size 12{B} {} perpendicular to the loop over a large angular range. Thus the torque is proportional to I size 12{I} {} and not θ size 12{θ} {} . A linear spring exerts a counter-torque that balances the current-produced torque. This makes the needle deflection proportional to I size 12{I} {} . If an exact proportionality cannot be achieved, the gauge reading can be calibrated. To produce a galvanometer for use in analog voltmeters and ammeters that have a low resistance and respond to small currents, we use a large loop area A size 12{A} {} , high magnetic field B size 12{B} {} , and low-resistance coils.

Diagram of a meter showing a current-carrying loop between two poles of a magnet. The torque on the magnet is clockwise. The top of the loop is connected to a spring and to a pointer that points to a scale as the loop rotates.
Meters are very similar to motors but only rotate through a part of a revolution. The magnetic poles of this meter are shaped to keep the component of B size 12{B} {} perpendicular to the loop constant, so that the torque does not depend on θ size 12{θ} {} and the deflection against the return spring is proportional only to the current I size 12{I} {} .

Section summary

  • The torque τ size 12{τ} {} on a current-carrying loop of any shape in a uniform magnetic field. is
    τ = NIAB sin θ , size 12{τ= ital "NIAB""sin"θ} {}
    where N size 12{N} {} is the number of turns, I size 12{I} {} is the current, A size 12{A} {} is the area of the loop, B size 12{B} {} is the magnetic field strength, and θ size 12{θ} {} is the angle between the perpendicular to the loop and the magnetic field.

Conceptual questions

Draw a diagram and use RHR-1 to show that the forces on the top and bottom segments of the motor’s current loop in [link] are vertical and produce no torque about the axis of rotation.

Got questions? Get instant answers now!

Problems&Exercises

(a) By how many percent is the torque of a motor decreased if its permanent magnets lose 5.0% of their strength? (b) How many percent would the current need to be increased to return the torque to original values?

(a) τ size 12{" τ"} {} decreases by 5.00% if B decreases by 5.00%

(b) 5.26% increase

Got questions? Get instant answers now!

(a) What is the maximum torque on a 150-turn square loop of wire 18.0 cm on a side that carries a 50.0-A current in a 1.60-T field? (b) What is the torque when θ size 12{θ} {} is 10 . 9º? size 12{"10" "." 9°?} {}

Got questions? Get instant answers now!

Find the current through a loop needed to create a maximum torque of 9 . 00 N m. size 12{9 "." "00"`N cdot m "." } {} The loop has 50 square turns that are 15.0 cm on a side and is in a uniform 0.800-T magnetic field.

10.0 A

Got questions? Get instant answers now!

Calculate the magnetic field strength needed on a 200-turn square loop 20.0 cm on a side to create a maximum torque of 300 N m size 12{3"00"`N cdot m} {} if the loop is carrying 25.0 A.

Got questions? Get instant answers now!

Since the equation for torque on a current-carrying loop is τ = NIAB sin θ size 12{τ= ital "NIAB""sin"θ} {} , the units of N m size 12{N cdot m} {} must equal units of A m 2 T size 12{A cdot m rSup { size 8{2} } `T} {} . Verify this.

A m 2 T = A m 2 N A m = N m size 12{A cdot m rSup { size 8{2} } cdot T=A cdot m rSup { size 8{2} } left ( { {N} over {A cdot m} } right )=N cdot m} {} .

Got questions? Get instant answers now!

(a) At what angle θ size 12{θ} {} is the torque on a current loop 90.0% of maximum? (b) 50.0% of maximum? (c) 10.0% of maximum?

Got questions? Get instant answers now!

A proton has a magnetic field due to its spin on its axis. The field is similar to that created by a circular current loop 0 . 650 × 10 15 m size 12{0 "." "650" times "10" rSup { size 8{ - "15"} } `m} {} in radius with a current of 1 . 05 × 10 4 A size 12{1 "." "05" times "10" rSup { size 8{4} } `A} {} (no kidding). Find the maximum torque on a proton in a 2.50-T field. (This is a significant torque on a small particle.)

3 . 48 × 10 26 N m size 12{3 "." "48" times "10" rSup { size 8{ - "26"} } `N cdot m} {}

Got questions? Get instant answers now!

(a) A 200-turn circular loop of radius 50.0 cm is vertical, with its axis on an east-west line. A current of 100 A circulates clockwise in the loop when viewed from the east. The Earth’s field here is due north, parallel to the ground, with a strength of 3 . 00 × 10 5 T size 12{3 "." "00" times "10" rSup { size 8{ - 5} } `T} {} . What are the direction and magnitude of the torque on the loop? (b) Does this device have any practical applications as a motor?

Got questions? Get instant answers now!

Repeat [link] , but with the loop lying flat on the ground with its current circulating counterclockwise (when viewed from above) in a location where the Earth’s field is north, but at an angle 45 . size 12{"45" "." 0°} {} below the horizontal and with a strength of 6. 00 × 10 5 T size 12{6 "." "00" times "10" rSup { size 8{ - 5} } `T} {} .

(a) 0.666 N m size 12{0 "." "666"`N cdot m} {} west

(b) This is not a very significant torque, so practical use would be limited. Also, the current would need to be alternated to make the loop rotate (otherwise it would oscillate).

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask