<< Chapter < Page Chapter >> Page >

What rocket thrust accelerates this sled?

Prior to manned space flights, rocket sleds were used to test aircraft, missile equipment, and physiological effects on human subjects at high speeds. They consisted of a platform that was mounted on one or two rails and propelled by several rockets. Calculate the magnitude of force exerted by each rocket, called its thrust T size 12{T} {} , for the four-rocket propulsion system shown in [link] . The sled’s initial acceleration is 49 m/s 2 , size 12{"49"" m/s" rSup { size 8{2} } } {} the mass of the system is 2100 kg, and the force of friction opposing the motion is known to be 650 N.

A sled is shown with four rockets, each producing the same thrust, represented by equal length arrows labeled as vector T pushing the sled toward the right. Friction force is represented by an arrow labeled as vector f pointing toward the left on the sled. The weight of the sled is represented by an arrow labeled as vector W, shown pointing downward, and the normal force is represented by an arrow labeled as vector N having the same length as W acting upward on the sled. A free-body diagram is also shown for the situation. Four arrows of equal length representing vector T point toward the right, a vector f represented by a smaller arrow points left, vector N is an arrow pointing upward, and the weight W is an arrow of equal length pointing downward.
A sled experiences a rocket thrust that accelerates it to the right. Each rocket creates an identical thrust T size 12{T} {} . As in other situations where there is only horizontal acceleration, the vertical forces cancel. The ground exerts an upward force N size 12{N} {} on the system that is equal in magnitude and opposite in direction to its weight, w size 12{w} {} . The system here is the sled, its rockets, and rider, so none of the forces between these objects are considered. The arrow representing friction ( f size 12{f} {} ) is drawn larger than scale.

Strategy

Although there are forces acting vertically and horizontally, we assume the vertical forces cancel since there is no vertical acceleration. This leaves us with only horizontal forces and a simpler one-dimensional problem. Directions are indicated with plus or minus signs, with right taken as the positive direction. See the free-body diagram in the figure.

Solution

Since acceleration, mass, and the force of friction are given, we start with Newton’s second law and look for ways to find the thrust of the engines. Since we have defined the direction of the force and acceleration as acting “to the right,” we need to consider only the magnitudes of these quantities in the calculations. Hence we begin with

F net = ma size 12{F rSub { size 8{"net"} } = ital "ma"} {} ,

where F net size 12{F rSub { size 8{"net"} } } {} is the net force along the horizontal direction. We can see from [link] that the engine thrusts add, while friction opposes the thrust. In equation form, the net external force is

F net = 4 T f size 12{-F rSub { size 8{"net"} } =4T-f} {} .

Substituting this into Newton’s second law gives

F net = ma = 4 T f size 12{F rSub { size 8{"net"} } = ital "ma"=4T-f} {} .

Using a little algebra, we solve for the total thrust 4 T :

4 T = ma + f size 12{4T= ital "ma"+f} {} .

Substituting known values yields

4 T = ma + f = ( 2100 kg ) ( 49 m/s 2 ) + 650 N size 12{4T= ital "ma"+f= \( "2100"" kg" \) \( "49 m/s" rSup { size 8{2} } \) +"650"" N"} {} .

So the total thrust is

4 T = 1.0 × 10 5 N size 12{4T=1 "." "04" times "10" rSup { size 8{5} } " N"} {} ,

and the individual thrusts are

T = 1.0 × 10 5 N 4 = 2.6 × 10 4 N size 12{T= { {1 "." "04" times "10" rSup { size 8{5} } " N"} over {4} } =2 "." 5 times "10" rSup { size 8{4} } " N"} {} .

Discussion

The numbers are quite large, so the result might surprise you. Experiments such as this were performed in the early 1960s to test the limits of human endurance and the setup designed to protect human subjects in jet fighter emergency ejections. Speeds of 1000 km/h were obtained, with accelerations of 45 g size 12{g} {} 's. (Recall that g size 12{g} {} , the acceleration due to gravity, is 9 . 80 m/s 2 size 12{9 "." "80 m/s" rSup { size 8{2} } } {} . When we say that an acceleration is 45 g size 12{g} {} 's, it is 45 × 9 . 80 m/s 2 size 12{"45"´9 "." "80 m/s" rSup { size 8{2} } } {} , which is approximately 440 m/s 2 size 12{"440 m/s" rSup { size 8{2} } } {} .) While living subjects are not used any more, land speeds of 10,000 km/h have been obtained with rocket sleds. In this example, as in the preceding one, the system of interest is obvious. We will see in later examples that choosing the system of interest is crucial—and the choice is not always obvious.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask