<< Chapter < Page Chapter >> Page >

A similar calculation for the simple pendulum produces a similar result, namely:

ω max = g L θ max . size 12{ω rSub { size 8{"max"} } = sqrt { { {g} over {L} } } θ rSub { size 8{"max"} } } {}

Determine the maximum speed of an oscillating system: a bumpy road

Suppose that a car is 900 kg and has a suspension system that has a force constant k = 6 . 53 × 10 4 N/m size 12{k=6 "." "53" times "10" rSup { size 8{4} } `"N/m"} {} . The car hits a bump and bounces with an amplitude of 0.100 m. What is its maximum vertical velocity if you assume no damping occurs?

Strategy

We can use the expression for v max size 12{v rSub { size 8{"max"} } } {} given in v max = k m X size 12{v size 8{"max"}= sqrt { { {k} over {m} } } X} {} to determine the maximum vertical velocity. The variables m size 12{m} {} and k size 12{k} {} are given in the problem statement, and the maximum displacement X size 12{X} {} is 0.100 m.

Solution

  1. Identify known.
  2. Substitute known values into v max = k m X size 12{v size 8{"max"}= sqrt { { {k} over {m} } } X} {} :
    v max = 6 . 53 × 10 4 N/m 900 kg (0 . 100 m) . size 12{v size 8{"max"}= sqrt { { {6 "." "53" times "10" rSup { size 8{4} } "N/m"} over {"900"" kg"} } } 0 "." "100"" m"} {}
  3. Calculate to find v max = 0.852 m/s . size 12{v rSub { size 8{"max"} } } {}

Discussion

This answer seems reasonable for a bouncing car. There are other ways to use conservation of energy to find v max size 12{v rSub { size 8{"max"} } } {} . We could use it directly, as was done in the example featured in Hooke’s Law: Stress and Strain Revisited .

The small vertical displacement y size 12{v rSub { size 8{"max"} } } {} of an oscillating simple pendulum, starting from its equilibrium position, is given as

y ( t ) = a sin ωt , size 12{y \( t \) =a"sin"ωt} {}

where a size 12{a} {} is the amplitude, ω size 12{ω} {} is the angular velocity and t size 12{t} {} is the time taken. Substituting ω = T size 12{ω= { {2π} over {T} } } {} , we have

y t = a sin t T . size 12{y left (t right )=a"sin" left ( { {2πt} over {T} } right )} {}

Thus, the displacement of pendulum is a function of time as shown above.

Also the velocity of the pendulum is given by

v ( t ) = 2 T cos t T , size 12{v \( t \) = { {2aπ} over {T} } "cos" left ( { {2πt} over {T} } right )} {}

so the motion of the pendulum is a function of time.

Got questions? Get instant answers now!

Why does it hurt more if your hand is snapped with a ruler than with a loose spring, even if the displacement of each system is equal?

The ruler is a stiffer system, which carries greater force for the same amount of displacement. The ruler snaps your hand with greater force, which hurts more.

Got questions? Get instant answers now!

You are observing a simple harmonic oscillator. Identify one way you could decrease the maximum velocity of the system.

You could increase the mass of the object that is oscillating.

Got questions? Get instant answers now!

Section summary

  • Energy in the simple harmonic oscillator is shared between elastic potential energy and kinetic energy, with the total being constant:
    1 2 mv 2 + 1 2 kx 2 = constant. size 12{ { {1} over {2} } ital "mv" rSup { size 8{2} } + { {1} over {2} } ital "kx" rSup { size 8{2} } =" constant"} {}
  • Maximum velocity depends on three factors: it is directly proportional to amplitude, it is greater for stiffer systems, and it is smaller for objects that have larger masses:
    v max = k m X . size 12{v rSub { size 8{"max"} } = sqrt { { {k} over {m} } } X} {}

Conceptual questions

Explain in terms of energy how dissipative forces such as friction reduce the amplitude of a harmonic oscillator. Also explain how a driving mechanism can compensate. (A pendulum clock is such a system.)

Got questions? Get instant answers now!

Problems&Exercises

The length of nylon rope from which a mountain climber is suspended has a force constant of 1 . 40 × 10 4 N/m size 12{1 "." "40" times "10" rSup { size 8{4} } "N/m"} {} .

(a) What is the frequency at which he bounces, given his mass plus and the mass of his equipment are 90.0 kg?

(b) How much would this rope stretch to break the climber’s fall if he free-falls 2.00 m before the rope runs out of slack? Hint: Use conservation of energy.

(c) Repeat both parts of this problem in the situation where twice this length of nylon rope is used.

(a) 1.99 Hz size 12{ "1.99 Hz" } {}

(b) 50.2 cm

(c) 1.41 Hz, 0.710 m

Got questions? Get instant answers now!

Engineering Application

Near the top of the Citigroup Center building in New York City, there is an object with mass of 4 . 00 × 10 5 kg size 12{4 "." "00" times "10" rSup { size 8{5} } "kg"} {} on springs that have adjustable force constants. Its function is to dampen wind-driven oscillations of the building by oscillating at the same frequency as the building is being driven—the driving force is transferred to the object, which oscillates instead of the entire building. (a) What effective force constant should the springs have to make the object oscillate with a period of 2.00 s? (b) What energy is stored in the springs for a 2.00-m displacement from equilibrium?

(a) 3 . 95 × 10 6 N/m size 12{3 "." "95" times "10" rSup { size 8{6} } "N/m"} {}

(b) 7 . 90 × 10 6 J size 12{7 "." "90" times "10" rSup { size 8{6} } "J"} {}

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask