<< Chapter < Page Chapter >> Page >
E = | F q | = k | qQ qr 2 | = k | Q | r 2 . size 12{E= { {F} over {q} } =k { { ital "qQ"} over { ital "qr" rSup { size 8{2} } } } =k { {Q} over {r rSup { size 8{2} } } } } {}

Since the test charge cancels, we see that

E = k | Q | r 2 . size 12{E=k { {Q} over {r rSup { size 8{2} } } } } {}

The electric field is thus seen to depend only on the charge Q size 12{Q} {} and the distance r size 12{r} {} ; it is completely independent of the test charge q size 12{q} {} .

Calculating the electric field of a point charge

Calculate the strength and direction of the electric field E size 12{E} {} due to a point charge of 2.00 nC (nano-Coulombs) at a distance of 5.00 mm from the charge.

Strategy

We can find the electric field created by a point charge by using the equation E = kQ / r 2 size 12{E= { ital "kQ"} slash {r rSup { size 8{2} } } } {} .

Solution

Here Q = 2 . 00 × 10 9 size 12{Q=2 "." "00" times "10" rSup { size 8{ - 9} } } {} C and r = 5 . 00 × 10 3 size 12{r=5 "." "00" times "10" rSup { size 8{ - 3} } } {} m. Entering those values into the above equation gives

E = k Q r 2 = ( 8.99 × 10 9 N m 2 /C 2 ) × ( 2.00 × 10 9 C ) ( 5.00 × 10 3 m ) 2 = 7.19 × 10 5 N/C. alignl { stack { size 12{E=k { {Q} over {r rSup { size 8{2} } } } } {} #= \( 9 "." "00" times "10" rSup { size 8{9} } N cdot m rSup { size 8{2} } "/C" rSup { size 8{2} } \) times { { \( 2 "." "00" times "10" rSup { size 8{ - 9} } C \) } over { \( 5 "." "00" times "10" rSup { size 8{ - 3} } m \) rSup { size 8{2} } } } {} # =7 "." "20" times "10" rSup { size 8{5} } "N/C" {}} } {}

Discussion

This electric field strength is the same at any point 5.00 mm away from the charge Q size 12{Q} {} that creates the field. It is positive, meaning that it has a direction pointing away from the charge Q size 12{Q} {} .

Got questions? Get instant answers now!

Calculating the force exerted on a point charge by an electric field

What force does the electric field found in the previous example exert on a point charge of –0.250 μ C ?

Strategy

Since we know the electric field strength and the charge in the field, the force on that charge can be calculated using the definition of electric field E = F / q size 12{E= {F} slash {q} } {} rearranged to F = q E size 12{F= ital "qE"} {} .

Solution

The magnitude of the force on a charge q = 0 . 250 μC size 12{q= - 0 "." "250""μC"} {} exerted by a field of strength E = 7 . 20 × 10 5 size 12{E=7 "." "20" times "10" rSup { size 8{5} } } {} N/C is thus,

F = qE = ( 0.250 × 10 –6 C ) ( 7.20 × 10 5 N/C ) = 0.180 N. alignl { stack { size 12{F= ital "qE"} {} #size 12{ {}= \( "-0" "." "250" times "10" rSup { size 8{"-6"} } `C \) \( 7 "." "20" times "10" rSup { size 8{5} } `"N/C" \) } {} # ="-0" "." "180"`N {}} } {}

Because q is negative, the force is directed opposite to the direction of the field.

Discussion

The force is attractive, as expected for unlike charges. (The field was created by a positive charge and here acts on a negative charge.) The charges in this example are typical of common static electricity, and the modest attractive force obtained is similar to forces experienced in static cling and similar situations.

Got questions? Get instant answers now!

Phet explorations: electric field of dreams

Play ball! Add charges to the Field of Dreams and see how they react to the electric field. Turn on a background electric field and adjust the direction and magnitude.

Electric Field of Dreams

Section summary

  • The electrostatic force field surrounding a charged object extends out into space in all directions.
  • The electrostatic force exerted by a point charge on a test charge at a distance r size 12{r} {} depends on the charge of both charges, as well as the distance between the two.
  • The electric field E size 12{E} {} is defined to be
    E = F q , size 12{E= { {F} over {q,} } } {}

    where F size 12{F} {} is the Coulomb or electrostatic force exerted on a small positive test charge q size 12{q} {} . E size 12{E} {} has units of N/C.

  • The magnitude of the electric field E size 12{E} {} created by a point charge Q size 12{Q} {} is
    E = k | Q | r 2 . size 12{E=k { {Q} over {r rSup { size 8{2} } } } } {}

    where r size 12{r} {} is the distance from Q size 12{Q} {} . The electric field E size 12{E} {} is a vector and fields due to multiple charges add like vectors.

Conceptual questions

Why must the test charge q size 12{q} {} in the definition of the electric field be vanishingly small?

Got questions? Get instant answers now!

Are the direction and magnitude of the Coulomb force unique at a given point in space? What about the electric field?

Got questions? Get instant answers now!

Problem exercises

What is the magnitude and direction of an electric field that exerts a 2 . 00 × 10 - 5 N size 12{2 "." "00" times "10" rSup { size 8{5} } N} {} upward force on a –1.75 μ C charge?

Got questions? Get instant answers now!

What is the magnitude and direction of the force exerted on a 3.50 μ C charge by a 250 N/C electric field that points due east?

8 . 75 × 10 4 size 12{8 "." "75" times "10" rSup { size 8{ - 4} } } {} N

Got questions? Get instant answers now!

Calculate the magnitude of the electric field 2.00 m from a point charge of 5.00 mC (such as found on the terminal of a Van de Graaff).

Got questions? Get instant answers now!

(a) What magnitude point charge creates a 10,000 N/C electric field at a distance of 0.250 m? (b) How large is the field at 10.0 m?

(a) 6 . 94 × 10 8 C size 12{ {underline {6 "." "94" times "10" rSup { size 8{ - 8} } " C"}} } {}

(b) 6 . 25 N/C size 12{ {underline {6 "." "25"" N/C"}} } {}

Got questions? Get instant answers now!

Calculate the initial (from rest) acceleration of a proton in a 5 . 00 × 10 6 N/C size 12{5 "." "00" times "10" rSup { size 8{6} } "N/C"} {} electric field (such as created by a research Van de Graaff). Explicitly show how you follow the steps in the Problem-Solving Strategy for electrostatics.

Got questions? Get instant answers now!

(a) Find the direction and magnitude of an electric field that exerts a 4 . 80 × 10 17 N size 12{4 "." "80" times "10" rSup { size 8{ - "17"} } N} {} westward force on an electron. (b) What magnitude and direction force does this field exert on a proton?

(a) 300 N/C ( east ) size 12{ {underline {"300"" N/C " \( "eas"}} {underline {t \) }} } {}

(b) 4 . 80 × 10 17 N ( east ) size 12{ {underline {4 "." "80" times "10" rSup { size 8{ - "17"} } " N " \( "east" \) }} } {}

Got questions? Get instant answers now!

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask