<< Chapter < Page Chapter >> Page >

Analogy of rotational and translational kinetic energy

Is rotational kinetic energy completely analogous to translational kinetic energy? What, if any, are their differences? Give an example of each type of kinetic energy.

Yes, rotational and translational kinetic energy are exact analogs. They both are the energy of motion involved with the coordinated (non-random) movement of mass relative to some reference frame. The only difference between rotational and translational kinetic energy is that translational is straight line motion while rotational is not. An example of both kinetic and translational kinetic energy is found in a bike tire while being ridden down a bike path. The rotational motion of the tire means it has rotational kinetic energy while the movement of the bike along the path means the tire also has translational kinetic energy. If you were to lift the front wheel of the bike and spin it while the bike is stationary, then the wheel would have only rotational kinetic energy relative to the Earth.

Got questions? Get instant answers now!

Phet explorations: my solar system

Build your own system of heavenly bodies and watch the gravitational ballet. With this orbit simulator, you can set initial positions, velocities, and masses of 2, 3, or 4 bodies, and then see them orbit each other.

My Solar System

Section summary

  • The rotational kinetic energy KE rot size 12{ ital "KE" rSub { size 8{ ital "rot"} } } {} for an object with a moment of inertia I and an angular velocity ω size 12{ω} {} is given by
    KE rot = 1 2 2 . size 12{"KE" rSub { size 8{"rot"} } = { {1} over {2} } Iω rSup { size 8{2} } } {}
  • Helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the blades before takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and put significant rotational energy into the blades.
  • Work and energy in rotational motion are completely analogous to work and energy in translational motion.
  • The equation for the work-energy theorem    for rotational motion is,
    net W = 1 2 2 1 2 I ω 0 2 . size 12{"net "W= { {1} over {2} } Iω rSup { size 8{2} } - { {1} over {2} } Iω rSub { size 8{0} rSup { size 8{2} } } } {}

Conceptual questions

Describe the energy transformations involved when a yo-yo is thrown downward and then climbs back up its string to be caught in the user’s hand.

Got questions? Get instant answers now!

What energy transformations are involved when a dragster engine is revved, its clutch let out rapidly, its tires spun, and it starts to accelerate forward? Describe the source and transformation of energy at each step.

Got questions? Get instant answers now!

The Earth has more rotational kinetic energy now than did the cloud of gas and dust from which it formed. Where did this energy come from?

The figure shows a closed view of a red planet in the sky, with a sun like object seen at the far right and the planet shown here being surrounded by circles of gas and dust.
An immense cloud of rotating gas and dust contracted under the influence of gravity to form the Earth and in the process rotational kinetic energy increased. (credit: NASA)
Got questions? Get instant answers now!

Problems&Exercises

This problem considers energy and work aspects of [link] —use data from that example as needed. (a) Calculate the rotational kinetic energy in the merry-go-round plus child when they have an angular velocity of 20.0 rpm. (b) Using energy considerations, find the number of revolutions the father will have to push to achieve this angular velocity starting from rest. (c) Again, using energy considerations, calculate the force the father must exert to stop the merry-go-round in two revolutions

(a) 185 J

(b) 0.0785 rev

(c) W = 9 . 81 N size 12{W= {underline {9 "." "81 N"}} } {}

Got questions? Get instant answers now!

Questions & Answers

find the equation of the tangent to the curve y=2x³-x²+3x+1 at the points x=1 and x=3
Esther Reply
derivative of logarithms function
Iqra Reply
how to solve this question
sidra
ex 2.1 question no 11
khansa
anyone can help me
khansa
question please
Rasul
ex 2.1 question no. 11
khansa
i cant type here
khansa
Find the derivative of g(x)=−3.
Abdullah Reply
any genius online ? I need help!!
Guzorochi Reply
how can i help you?
Pina
need to learn polynomial
Zakariya
i will teach...
nandu
I'm waiting
Zakariya
plz help me in question
Abish
How can I help you?
Tlou
evaluate the following computation (x³-8/x-2)
Murtala Reply
teach me how to solve the first law of calculus.
Uncle Reply
teach me also how to solve the first law of calculus
Bilson
what is differentiation
Ibrahim Reply
only god knows😂
abdulkadir
f(x) = x-2 g(x) = 3x + 5 fog(x)? f(x)/g(x)
Naufal Reply
fog(x)= f(g(x)) = x-2 = 3x+5-2 = 3x+3 f(x)/g(x)= x-2/3x+5
diron
pweding paturo nsa calculus?
jimmy
how to use fundamental theorem to solve exponential
JULIA Reply
find the bounded area of the parabola y^2=4x and y=16x
Omar Reply
what is absolute value means?
Geo Reply
Chicken nuggets
Hugh
🐔
MM
🐔🦃 nuggets
MM
(mathematics) For a complex number a+bi, the principal square root of the sum of the squares of its real and imaginary parts, √a2+b2 . Denoted by | |. The absolute value |x| of a real number x is √x2 , which is equal to x if x is non-negative, and −x if x is negative.
Ismael
find integration of loge x
Game Reply
find the volume of a solid about the y-axis, x=0, x=1, y=0, y=7+x^3
Godwin Reply
how does this work
Brad Reply
Can calculus give the answers as same as other methods give in basic classes while solving the numericals?
Cosmos Reply
log tan (x/4+x/2)
Rohan
please answer
Rohan
y=(x^2 + 3x).(eipix)
Claudia
is this a answer
Ismael
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask